Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Eng ; 6(1): 8, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22716313

RESUMO

BACKGROUND: Plant biotechnology can be leveraged to produce food, fuel, medicine, and materials. Standardized methods advocated by the synthetic biology community can accelerate the plant design cycle, ultimately making plant engineering more widely accessible to bioengineers who can contribute diverse creative input to the design process. RESULTS: This paper presents work done largely by undergraduate students participating in the 2010 International Genetically Engineered Machines (iGEM) competition. Described here is a framework for engineering the model plant Arabidopsis thaliana with standardized, BioBrick compatible vectors and parts available through the Registry of Standard Biological Parts (http://www.partsregistry.org). This system was used to engineer a proof-of-concept plant that exogenously expresses the taste-inverting protein miraculin. CONCLUSIONS: Our work is intended to encourage future iGEM teams and other synthetic biologists to use plants as a genetic chassis. Our workflow simplifies the use of standardized parts in plant systems, allowing the construction and expression of heterologous genes in plants within the timeframe allotted for typical iGEM projects.

2.
Proc Natl Acad Sci U S A ; 105(8): 2969-74, 2008 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-18287064

RESUMO

HSP90 is a protein chaperone particularly important in the maturation of a diverse set of proteins that regulate key steps in a multitude of biological processes. Alterations in HSP90 function produce altered phenotypes at low penetrance in natural populations. Previous work has shown that at least some of these phenotypes are due to genetic variation that remains phenotypically cryptic until it is revealed by the impairment of HSP90 function. Exposure of such "buffered" genetic polymorphisms can also be accomplished by environmental stress, linking the appearance of new phenotypes to defects in protein homeostasis. Should such polymorphisms be widespread, natural selection may be more effective at producing phenotypic change in suboptimal environments. In evaluating this hypothesis, a key unknown factor is the frequency with which HSP90-buffered polymorphisms occur in natural populations. Here, we present Arabidopsis thaliana populations suitable for genetic mapping that have constitutively reduced HSP90 levels. We employ quantitative genetic techniques to examine the HSP90-dependent polymorphisms affecting a host of plastic plant life-history traits. Our results demonstrate that HSP90-dependent natural variation is present at high frequencies in A. thaliana, with an expectation that at least one HSP90-dependent polymorphism will affect nearly every quantitative trait in progeny of two different wild lines. Hence, HSP90 is likely to occupy a central position in the translation of genotypic variation into phenotypic differences.


Assuntos
Arabidopsis/genética , Evolução Biológica , Variação Genética , Proteínas de Choque Térmico HSP90/genética , Fenótipo , Locos de Características Quantitativas/genética , Mapeamento Cromossômico
3.
Proc Natl Acad Sci U S A ; 105(8): 2963-8, 2008 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-18287065

RESUMO

Modulation of the activity of the molecular chaperone HSP90 has been extensively discussed as a means to alter phenotype in many traits and organisms. Such changes can be due to the exposure of cryptic genetic variation, which in some instances may also be accomplished by mild environmental alteration. Should such polymorphisms be widespread, natural selection may be more effective at producing phenotypic change in suboptimal environments. However, the frequency and identity of buffered polymorphisms in natural populations are unknown. Here, we employ quantitative genetic dissection of an Arabidopsis thaliana developmental response, hypocotyl elongation in the dark, to detail the underpinnings of genetic variation responsive to HSP90 modulation. We demonstrate that HSP90-dependent alleles occur in continuously distributed, environmentally responsive traits and are amenable to quantitative genetic mapping techniques. Furthermore, such alleles are frequent in natural populations and can have significant effects on natural phenotypic variation. We also find that HSP90 modulation has both general and allele-specific effects on developmental stability; that is, developmental stability is a phenotypic trait that can be affected by natural variation. However, effects of revealed variation on trait means outweigh effects of decreased developmental stability, and the HSP90-dependent trait alterations could be acted on by natural selection. Thus, HSP90 may centrally influence canalization, assimilation, and the rapid evolutionary alteration of phenotype through the concealment and exposure of cryptic genetic variation.


Assuntos
Arabidopsis/genética , Variação Genética , Proteínas de Choque Térmico HSP90/genética , Fenótipo , Locos de Características Quantitativas , Arabidopsis/crescimento & desenvolvimento , Hipocótilo/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento
4.
Plant J ; 51(4): 727-37, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17645438

RESUMO

Natural variation and induced mutations are important resources for gene discovery and the elucidation of genetic circuits. Mapping such polymorphisms requires rapid and cost-efficient methods for genome-wide genotyping. Here we report the development of a microarray-based method that assesses 240 unique markers in a single hybridization experiment at a cost of less than US$50 in materials per line. Our genotyping array is built with 70-mer oligonucleotide elements representing insertion/deletion (indel) polymorphisms between the Arabidopsis thaliana accessions Columbia-0 (Col) and Landsberg erecta (Ler). These indel polymorphisms are recognized with great precision by comparative genomic hybridization, eliminating the need for array replicates and complex statistical analysis. Markers are present genome-wide, with an average spacing of approximately 500 kb. PCR primer information is provided for all array indels, allowing rapid single-locus inquiries. Multi-well chips allow groups of 16 lines to be genotyped in a single experiment. We demonstrate the utility of the array for accurately mapping recessive mutations, RIL populations and mixed genetic backgrounds from accessions other than Col and Ler. Given the ease of use of shotgun sequencing to generate partial genomic sequences of unsequenced species, this approach is readily transferable to non-model organisms.


Assuntos
Deleção de Genes , Mutagênese Insercional , Polimorfismo Genético/genética , Arabidopsis/genética , Marcadores Genéticos/genética , Genoma de Planta , Genótipo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Especificidade da Espécie
5.
PLoS One ; 2(7): e648, 2007 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-17653275

RESUMO

The molecular chaperone HSP90 aids the maturation of a diverse but select set of metastable protein clients, many of which are key to a variety of signal transduction pathways. HSP90 function has been best investigated in animal and fungal systems, where inhibition of the chaperone has exceptionally diverse effects, ranging from reversing oncogenic transformation to preventing the acquisition of drug resistance. Inhibition of HSP90 in the model plant Arabidopsis thaliana uncovers novel morphologies dependent on normally cryptic genetic variation and increases stochastic variation inherent to developmental processes. The biochemical activity of HSP90 is strictly conserved between animals and plants. However, the substrates and pathways dependent on HSP90 in plants are poorly understood. Progress has been impeded by the necessity of reliance on light-sensitive HSP90 inhibitors due to redundancy in the A. thaliana HSP90 gene family. Here we present phenotypic and genome-wide expression analyses of A. thaliana with constitutively reduced HSP90 levels achieved by RNAi targeting. HSP90 reduction affects a variety of quantitative life-history traits, including flowering time and total seed set, increases morphological diversity, and decreases the developmental stability of repeated characters. Several morphologies are synergistically affected by HSP90 and growth temperature. Genome-wide expression analyses also suggest a central role for HSP90 in the genesis and maintenance of plastic responses. The expression results are substantiated by examination of the response of HSP90-reduced plants to attack by caterpillars of the generalist herbivore Trichoplusia ni. HSP90 reduction potentiates a more robust herbivore defense response. In sum, we propose that HSP90 exerts global effects on the environmental responsiveness of plants to many different stimuli. The comprehensive set of HSP90-reduced lines described here is a vital instrument to further examine the role of HSP90 as a central interface between organism, development, and environment.


Assuntos
Arabidopsis/genética , Variação Genética , Proteínas de Choque Térmico HSP90/genética , Animais , Arabidopsis/parasitologia , Proteínas de Arabidopsis/genética , Meio Ambiente , Regulação da Expressão Gênica de Plantas , Lepidópteros/genética , Lepidópteros/patogenicidade , Fenótipo , Interferência de RNA , RNA de Cadeia Dupla/genética , RNA de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...